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The problem of the linear stability of steady axisymmetric shear magnetohydrodynamic jet flows of an inviscid ideally conducting 
incompressible fluid with a free boundary is investigated. It is assumed that the jet is of unlimited length, there is a longitudinal 
constant electric current along its surface, and it is directed along the axis of a cylindrical shell with infinite conductivity, such 
that there is a vacuum layer between its free boundary and the inner surfaces of the shell. The necessary and sufficient condition 
for the stability of such flows with respect to small axisymmetric long-wave perturbations of special form is obtained by Lyapunov’s 
direct method. Bilateral exponential estimates of the growth of small perturbations are constructed in the case when this stability 
condition breaks down, where the indices in their exponents are calculated from the parameters of the steady flows and the initial 
data for the perturbations. An example of a steady axisymmetric shear magnetohydrodynamic jet flow and of the initial small 
axisymmetric long-wave perturbations imposed on it is given, which, at the linear stage, will evolve in time and space in accordance 
with the estimates constructed. 0 2003 Elsevier Ltd. All rights reserved. 

Below, the results on stability are established for a considerably wider class of steady flows than those 
considered previously in [l], and when there is a poloidal rather than an azimuthal magnetic field, 
“frozen” into the material of the jet. 

1. FORMULATION OF THE EXACT PROBLEM 

We will investigate an axisymmetric ideally conducting fluid jet of unlimited length in a magnetic field, 
along the free boundary of which there is a constant longitudinal electric current J. The jet is directed 
along the axis of a cylindrical shell of radius Y* of infinite conductivity, which nowhere touches it due 
to the presence of a vacuum gap between them. We will introduce a cylindrical system of coordinates 
(r*, cp, z*) such that its z* axis coincides with the axis of symmetry of the jet. We will use the following 
notation: p is the fluid density, (vi, R, u3) are the components of the velocity field, (Hi, H2, H3) are 
the components of the magnetic field inside the jet, P is the pressure field, (HT, Hz, Hz) are the 
components of the magnetic field outside the conducting jet, and t* is the time. We will assume that 
when the fluid in the jet moves u2 = 0, H2 3 0, these motions are themselves axisymmetric, and the fluid 
is ideal, incompressible and of uniform density. The action of the surface-tension forces on the free 
boundary of the jet is ignored. 

In the light of the above assumptions, the equations of single fluid non-dissipative magneto- 
hydrodynamics [2,3] take the form 

( 
av, au, au, 

> 
ha4 ap, + H,aH, 

P at*+“lar*+“3p = a+ 4nF+li&Z 

P($ 
au3 au3 = ap, H,~H, H3aH3 

+v-+v3az* ‘at+* > az* +ziar*+Giaz* 
I a(w) au, --+- = 

r* i3r* az* 0 (l-1) 
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d(Ar*) + u a(Ar*) 
at* 1 a+ 

atAr*) o 
+u3az* = 

H;+Hf 
P,=Pyg-, H,+ H,+!!&) 

Here P, is the modified pressure field and A is the azimuthal component of the magnetic field vector 
potential. 

If we neglect the displacement current, the relations for the components of the magnetic field in the 
region between the inner surface of the cylindrical shell and the free boundary of the jet [4] can be 
written in the form 

aH; aH: aH; 1 a(@‘*) 
- = 09 aZ*-p = O9 -+j Jr* = O az* 
1 J(@r*)+T = o 

7 &* az* 

We impose the following boundary conditions: 
on the axis of the jet 

r* = 0: v, = 0, H, = 0 

on its free surface 

r* = r,(t*, z*): P, = 
H:* + H,** + Hz* ar1 ar1 

8% 9 V1=at*+V3p 

H,-H ar, 
3at* 

= 0, H;-H*a” = 0 
3 az* 

(1.2) 

(1.3) 

(1.4) 

on the inner boundary of the cylindrical shell 

r* = r*. *H: = 0 (1.5) 

The initial conditions for system of equations (1.1) and the second of relations (1.4) are specified in 
the form 

Y(O, r*, z*) = %0(r*, z*), v,(O, r*, z*) = v30(r*, z*) 

AtO, r*, z*) = Ao(r*, z*), rdO, z*) = rlo(z*) 
(1.6) 

where it is required of the functions ulo, usO,AO and r10 that they should not contradict the third equation 
of system (1.1) conditions (1.3), and also the first, third and fourth relations of system (1.4). 

Further, in the initial-boundary-value problem (1 . l)-( 1.6) we change to the long-wave approximation, 
anticipating the change to dimensionless form. Here, we take the following as the scales: L is the 
characteristic scale of change of the hydrodynamic and magnetic fields along the z* coordinate axis, 
us is the characteristic velocity of the fluid, and r. is the characteristic radius of the jet, and we 
construct the dimensionless quantities t, n,~*, 4, z, H, w, a, h*, K and H*, so that we have the following 
expressions 

t* = tLlV,, r** = qL*6*, P, = p*pui, 2v,r* = quoL6* 

Z* = zL, H,r* = hv,,J;c?;LiS*, H, = 2Hvo& 

v3 = wvc), Ar* = avo&L26*, Hrr* = h*v,KpL6* 

H;r* = 21cv,Jx?;L6, Hz = 2H*q,&p 

(l-7) 

where 6 = rdL =S 1 is the dimensionless characteristic radius of the jet. 
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As a result we obtain the following system of equations from (1.1) 

2 

-c+wq, 
q 27l 1 

2 

-If-+Hh, q m 1 
w,+qw~+ww, = -p*,+hH,+HH,, q,,+wz = 0 

a, + qa,, + wa, = 0; h = - a,, H=aq 

Here and below the corresponding partial derivatives are denoted by the subscripts of the independent 
variables. 

The system of relations (1.2) is converted to the form 

ti2h:-4qH;T = 0, H:+h,” = 0, K= J 
WdG 

= const 

Bearing the last equation of (1.9) . m mind, the boundary conditions (1.3)-(M) can be represented 
in the form 

IJ = 0: q = 0, h = 0 

IJ = q1(t,z): q = rl1,+wrl,p P* = 
I (1.10) 

7 = v,(f,z): h-Hv,z = 0, h*-H*qlZ = 0 

q = q*: h* = 0 

The function ni(t, z) describes the change in the form of the free surface of the jet with time, while 
the quantity n* corresponds to the radius of the cylindrical shell surrounding it. 

Finally, the initial conditions (1.6) take the form 

4(Q% z) = 4o(rl,z), W,q,z) = w,(q,z) 
40,VYZ) = a,(rl,z), 111(0,2) = 7,()(z) 

(1.11) 

Hence it follows that if we eliminate from the relations of the initial-boundary-value problem 
(1.8)-(1.11) terms proportional to the factor S2, and remove the expression for the function q(0, TJ, z), 
we thereby give it a form which also corresponds exactly to the long-wave approximation. 

It is noteworthy that the system of equations (1.9) will then possess a solution which converts the 
sixth and seventh boundary conditions of (1.10) into identities, namely 

h*(t,%z) = @I* -TM,*, H*(t, z) = W% -rll) 

Here @ = Q(t) is the derivative of a function of time, which, in its physical meaning, is the dimensionless 
axial magnetic flux through the vacuum layer between the free boundary of the jet and the inner surface 
of the cylindrical shell. 

It is further assumed that the axial magnetic flux through the vacuum gap between the jet and the 
shell is fixed, i.e. Q(t) = @a = const. This assumption implies that there is no mechanical system of sources 
apart from the source investigated, which could cause a change in the value of this flux with time, and 
is in complete agreement with the relations obtained from the mixed problem (1.8)-( 1.11) by changing 
to the long-wave approximation. As a result, the fourth equation of the system of boundary conditions 
(1.10) is converted into the relation 

(1.12) 

The subsequent consideration of the long-wave modification of the initial-boundary-value problem 
(1.8)-(1.11) can be simplified considerably if we replace the Euler independent variables (t, 1, z) by 
the mixed Euler-Lagrange variables (t’, v, z’) [5]. This replacement, by analogy with that proposed 
previously in [l], is defined by the relations 
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t = t’, TJ = R(t’,v,z’), z = z’; v E [0, l] 

where it is assumed that the function R occurring in them satisfies the equation 

q = R,, + wRi (1.13) 

and the boundary conditions 

Nt’, 0, z’) = 0, R(t’, I, z’) = qll(t’, z’) (1.14) 

The essential feature of this replacement of the independent variables is the fact that the trajectories 
of the fluid particles now turn out to be numbered using the new variable v. Moreover, it follows from 
expressions (1.13) and (1.14), which characterize the properties of the function R(t’, v, z’), that the first 
and third boundary conditions of system (1.10) are automatically satisfied for the function q(t, n, z). 
Finally (and this is very important), the unknown free boundary n = nt(t, z) of the jet is mapped by 
such a replacement of the independent variables into the known tixed surface v = 1. 

Thus, in the new mixed Euler-Lagrange variables (taking into account the fact that terms containing 
the factor 62 are neglected), the system of relations (1.8) can be rewritten in the form 

R,(w, + ww,) = - R,P*~ + hH, + R,HH, - HR,H, 

p*v = 0, qv+Rvw,-R,w, = 0, a,+wa, = 0 

a,4 hs-a,+- 
Rv ’ 

(1.15) 

where, for the convenience in representing the calculations which follow, the primes are omitted from 
the independent variables t’ and z’. 

The boundary conditions for Eqs (1.15) will be relations (1.12) and the constraint 

a, = 0 (v=O,l) (1.16) 

following from the second and fifth equations of (l.lO), and also the last two expressions of system of 
equations (1.15). 

Relations (1.12)-(1.16) are supplemented by the initial conditions in the form 

40, V-Z) = wo(v,z), R(O,v,z) = R,(v, z), 40, v,z) = a,(v,z) (1.17) 

The function Ro(v, z) is assumed to be a monotonically increasing function of the argument v in 
view of the requirement of the one-to-one correspondence of the product of the replacement of 
variables. 

The mixed problem (1.12)-(1.17) will be investigated further on the assumption that the quantity a 
is a specified function of the independent variable v, namely, a = a,(v). This means that the product 
of the azimuthal components of the vector potential of the magnetic field and the radial coordinate, 
reduced to dimensionless form, remains constant on each line v = const during the motion. It is essential 
that this constraint does not contradict the fourth term from Eqs (1.15), since if we take a0 = a,(v) 
when t = 0, then, according to this equation, this form of the dependence of a on the variable v does 
not undergo any changes at any subsequent instant of time t > 0. Moreover, if the function a has the 
form a,(v), the boundary condition (1.16) is satisfied identically. 

In order to give the initial-boundary-value problem (1.12)-(1.17) the clearest form, by means of 
relation (1.12) and the second equation of system (1.15) we obtain the relation 

[ 
c2 

P *z = --+ 4 
211: (rl* -%I3 1 Ill, (1.18) 

Now replacing the partial derivative peZ in the system of relations (1.15) by its expression (1.18), and 
the function q by its representation (1.13) and taking the above assumption on the form of the functional 
relation between a and the variable v into account, we can finally write the mixed problem (1.12)-(1.17) 
in the form 
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w,+ww, = 
[ 
$ - (R*yR,)‘]Rlz- f$gT) 

4, + WQ = 0 
(1.19) 

w(O,“,Z) = “‘,(“,z), R(O,v,z) = R,(v,~) 

where RI is the value of the function R on the free boundary of the jet v = 1, for which, by virtue of 
the second of equations (1.14), we have the relation RI = ni(t, z), while R, is the radius of the cylindrical 
shell surrounding the jet (this notation is introduced instead of n* for the sake of uniformity of the 
further discussion). 

It is necessary to note that, if we choose as R a function which decreases monotonically with respect 
to the independent variable v, in this case we obtain equations similar to the first two relations of system 
(1.19). The difference will consist solely of the fact that the free surface of the jet will then not be the 
axisv = 1 but the straight line v = 0, while its axis of symmetry will be the straight line v = 1 and not 
the axis v = 0. 

An energy integral exists for the initial-boundary-value problem (1.19) of the form 

2 

dv + K21nR, + & dz = const 
* 1 

(1.20) 

with the condition that the solutions of this problem are either periodic along the coordinate z axis or 
localized on it (in the latter case the flow of fluid at infinity must be uniform along the z coordinate). 
Moreover, it is easy to show that the functional 

+-1 

II 
II 

[w,F(a,)l~dz 
--0 

(1.21) 

where F is an arbitrary function, serves as one more integral of motion for the mixed problem (1.19)[ 1.61. 
For later convenience we will introduce the following notation 

The initial-boundary-value problem (1.19) has exact steady solutions, which can be written in the form 

w = w’(v), R = R’(v), R 1 = R$l, h = hosO, iY = If(v)q, (1.22) 

where w” is an arbitrary function of the variable v while R” is a monotonically increasing function of 
the variable v, and the radius of the unperturbed jet is taken to be equal to r. (1.7). 

Our further investigation is aimed at clarifying the sufficient conditions for linear stability of the 
stationary solutions (1.22) to small axisymmetric long-wave perturbations w’(t, v, z) and R’(t, v, z). 

2. FORMULATION OF THE LINEARIZED PROBLEM 

We can attempt to achieve the above-mentioned aim by linearizing the mixed problem (1.19) near the 
exact stationary solutions (1.22). We finally obtain the initial-boundary-value problem 

w) + wow; = - ‘PR;, - x~~R;~, R;, + w”R;: + ‘SW: = 0 

R;O, z) = R’(t, 1, z), h’q,,R;, ff ‘--x~~R; 

““(%“,Z) = w&z), R’(O,v,z) = R&z) 

(2.1) 
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Here 

Y’r @i K2 -- 
(R*-1)3 2 

In the solutions of this problem the functional 

+ 2w”R: W’ + x32RL2 dz (2.2) 

remains the same with time. 
It is easy to check that the first variation JJi of the integral J1 = El + I (1.20) (1.21) vanishes in the 

stationary solutions (1.22), if the functions w”, R”, a, and F convert the equations 

odR” dFda, dx,l odw’ 
w x = da, d,, ’ %1x = w x (2.3) 

into identities. Here the second variation S2J1 of functional Ji, rewritten in appropriate notation, is 
identical in form with the integral E (2.2). 

The exact stationary solutions (1.22) of mixed problem (1.19) will be stable to small axisymmetric 
long-wave perturbations (2.1) if and only if the functional E is sign-definite. 

In order to establish whether the integral E (2.2) possesses the property of sign-definiteness, it is 
convenient to represent it in the form 

E = ;+j i(Bu, u)dvdz; u P coI(w’, R:, R;) 
--0 

(2.4) 

Here B = ]] bik ]] is a 3 x 3 matrix with non-zero elements 

b 
dR” 

O b22 
Y 

II = F’ b,, = b,, = w , = x32r b,, = b,, = z 

By Sylvester’s criterion [7] the integrand of the functional E (2.4) is positive (negative) definite if 
and only if the principal minors of the matrix B are positive (have the sign (-l)n, when it is the order 
of the corresponding principal minor). Direct calculation of the principal minor A,, of the matrix B leads 
to the relations 

dR” 
A, = dv>O, A2 = x22-~ O2 A3 = -;g’<() , 

and enables us to conclude that, by virtue of Sylvester’s criterion, the integral E (2.4) does not possess 
the property of sign-definiteness. 

Hence, one cannot obtain the sufficient conditions for linear stability of the exact stationary solutions 
(1.22) of the initial-boundary-value problem (1.19) to small axisymmetric long-wave perturbations 
w’(t, v, z) and R’(t, v, z) (2.1), if we mean by these the conditions for the functional E, given by (2.2) 
and (2.4), to be sign-definite as far as its energy nature is concerned. 

3. FORMULATION OF THE SPECIAL EXACT PROBLEM 

Below, we consider the linear stability of the stationary solutions (1.22) of mixed problem (1.19) in the 
class of motions of the fluid such that 

R(t, v, z) = R,(t, z)R’(v> (3.1) 

This relation enables to convert the second of the equations of the initial-boundary-value problem 
(1.19) to the form 
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R,, + (WQ = 0 (3.2) 

If we differentiate relation (3.2) with respect to the independent variable v, we obtain the equation 

I.4 Z” = 0; u=wR, (3.3) 

which is the condition for the motions of the fluid of the form (3.1) to be consistent. 
Substituting the functions R from (3.1) and u from (3.3) into the first, third and fourth relations of 

mixed problem (1.19), and also into Eq. (3.2) we can write them in the form 

z, Rl,+u, = 0 
P-4) 

In turn, differentiating the first of relations (3.4) first with respect to the variable v and then with 
respect to the independent variable z and, finally, once again with respect to the variable v, we derive 
the second condition for the class (3.1) of motions of the fluid to be compatible 

(3.5) 

We supplement Eqs (3.3)-(3.5) by the initial conditions 

u(O,v~Z) = U,(V,z), R,(O,z) = R,&) (3.6) 

Finally, we formulate initial-boundary-value problem (3.3)-(3.6), which describes the special class 
(3.1), (3.3) and (3.5) of transient axisymmetric shear magnetohydro-dynamic jet flows of an inviscid 
ideally conducting incompressible fluid with a free boundary in the long-wave approximation. 

The integrals El (1.20) and Z (1.21) will also be preserved in time in the solutions of the mixed problem 
(3.3)-(3.36), but, in view of the definitions of the functions R (3.1) and u (3.3) introduced above, their 
form becomes somewhat different: 

1 0 2 

E, = z QO R;‘~$(~’ +x22) dv + K21nRl + R 1 dz 
* 1 

The following functions serve as the exact stationary solutions of initial-boundary-value problem 
(3.3)-(3.6) 

u = w’(v), R, = R;=l, h = h’=O, H = H”(v)ql (3.8) 

The purpose of the further investigation is to find the sufficient conditions for linear stability of 
stationary solutions (3.8) to small axisymmetric long-wave perturbations ~‘(t, v, z) and R;(t, 2). It is clear 
that these stability conditions will simultaneously be the sufficient conditions for linear stability of the 
exact stationary solutions (1.22) of mixed problem (1.19) with respect to the small axisymmetric long- 
wave perturbations. 

4. FORMULATION OF THE SPECIAL LINEARIZED PROBLEM 

To achieve the stated aim, we will linearize initial-boundary-value problem (3.3)-(3.6) near the stationary 
solutions (3.8), which leads to the mixed problem 
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u;+2w"u; = (w 02-X)R;zr R;,+ u; = 0, uiV = 0 

= 0, h’ = R’R;,x,, 

H’ = -R;x,,; U’(o, V, z) = u&‘, z), R;(O, z) = R;,(z) 

Here 

For this problem we have the following functional, which preserves its form with time 

2 + (x - wo2)R’,*] dvdz 

(4.1) 

(4.2) 

The first variation 6J1 of the integral J1 = El + I(3.7) is equal to zero in the exact stationary solutions 
(3.8), while its second variation SzJ1 is identical, in the corresponding notation, to the functional E2, if 
the following relations hold 

odR” 
w - = Sd$ wO(l)F(a*(l)) dv = wOwwJ*(o)) 

* (4.3) 

(compare with Eqs (2.3)). 
The stationary solutions (3.8) of initial-boundary-value problem (3.3)-(3.6) (and of course, also the 

accurate stationary solutions (1.22) of mixed problem (1.19)) will be stable to small axisymmetric long- 
wave perturbations (4.1) if and only if everywhere inside the jet 

x-wo220 (4.4) 

since this relation, as follows from expression (4.2), ensures at least that the integral E2 is negative. 
We must emphasise that inequality (4.4) is also the sufficient condition for the linear stability of the 

stationary solutions (3.8) (or (1.22)), which it was required to obtain. 

5. THE LYAPUNOV FUNCTIONAL 

We will further assume that relation (4.4) remains true at least everywhere inside the jet. In this case 
we can hope to demonstrate the linear instability of the accurate stationary solutions (3.8) of initial- 
boundary-value problem (3.3)-(3.6) (and together with these, naturally, the stationary solutions (1.22) 
of mixed problem (1.19) also) to small axisymmetric long-wave perturbations ~‘(t, v, z) and R;(t, z) (4.1). 
If this can be achieved, then we will have proved that condition (4.4) of linear stability of the exact 
stationary solutions (3.8) (or (1.22)) is not only sufficient but also necessary. 

To do this we must be able to separate from the small axisymmetric long-waveperturbation (4.1) at 
most one, but which increases with time exponentially rapidly. This can be most effectively realised in 
the case when the investigation is concentrated on small axisymmetric long-wave perturbations which 
are simple deviations of the trajectories of motion of the fluid particles from the corresponding 
streamlines of the steady flows (3.8). These perturbations can be described most clearly of all using the 
Lagrange displacement field 5 = &, v, z) [8], which satisfies the equation 

5, = u’ 

Hence it follows that initial-boundary-value problem (4.1) then takes the form 

5,, + 2w”s,, = ct - wo2)52,* R; = - 5,, t,, = 0, H’ = xl,& 

(5.1) 

= 0, h’ = -R”~I,&, (5.2) 

5(0, v9 z) = 5o(v,z), go, v, z) = u’(0, v,z) = l.&(v,z) 
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Due to the presence of the third relation in system (5.2) the mixed problem (5.1), (5.2) is overdefined. 
However, this relation indicates that the function Qt, v, z), being a solution of initial-boundary-value 
problem (5.1) (5.2) must have the form 

k(t, v, z) = f(t, z) +f,(t, v) (5.3) 

(f(t, z) andfi(t, v) are certain functions of its arguments) and no other. 
Consequently, the initial data cO(v, z) and uh(v, z) for mixed problem (5.1) (5.2) must be specified 

in the form 

5&Y z) = f*(V) + f&)9 4)(v, z) = f4(V) + fs(d (5.4) 

wheref2 andf4 are arbitrary functions of the independent variable v, andfs andfs are certain functions 
of the variable z. 

We must now investigate whether initial-boundary-value problem (5.1), (5.2) has solutions in the form 
(5.3) and whether the fact that mixed problem (5.1) (5.2) is overdefined imposes any additional 
limitations (apart from (5.4)) on the choice of the initial perturbations &,(v, z), uh(v, z). 

The most convincing answers to these questions can be given if we reformulate initial-boundary-value 
problem (5.1), (5.2) in the form 

R;,, + 2w”R;,, = (x-w 
02 I 

JR,,,, h’ = R’x,,R;, 

= 0, IT = -xIIR; 

R;(O, z) = R;,(z) (= -;), R;,(O, z> = (R;,),(z) (= -2) 

It can be seen that mixed problem (5.5) includes a unique equation for determining the unique 
required function R;(t, z), and, which is extremely important, this question is homogeneous. Hence, 
the initial data Rio(z) and (R’ ) ( ) it o z can take arbitrary values without any additional limitations. 

Finally, if the solution R;(t, z) of initial-boundary-value problem (5.5) is obtained, then, using the 
second of the system of relations (5.2), one can calculate the function k(t, v, z) as the solution of mixed 
problem (5.1), (5.2), which corresponds completely to representation (5.3). 

Thus, basing ourselves on these considerations, we can conclude that initial-boundary-value problem 
(5.1), (5.2) can have a solution in the form (5.3) where the fact that it is overdefined is not accompanied 
by any additional limitations (with the exception of (5.4)) on the initial perturbations ko(v, z), uh(v, z). 

Below, for later convenience, we will introduce the additional integrals 

+-1 0 

II s ; j j$XR’$‘vdz, 
+- ’ dRo 

l-I, = ; j j-+x - wo2)R;2dvdz (5.6) 
--0 --0 

+=-1 

T, = 
II 

dR” o h,w (u’- w’R;)R;dvdz, +-‘dR’ 2 
T,=; j j,u’ dvdz 

--0 --0 

so that 

E, I T + II + T, = T, + II, = const P-7) 

Double differentiation of the function M (5.6) with respect to time and conversions of the integral 
obtained in the result using relations (4.1) (5.1) (5.2) and (5.6) enables us to arrive at the fundamental 
equation [ 1.91 

d2Mldt2 = 4(T- l-I) 
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which is called a virial equality [8]. Now multiplying this equality by a certain constant factor h, bearing 
relation (5.7) in mind and using the equation 

dT,ldt = 0 

(which follows directly from the mixed problems (4.1) and (5.1), (5.2)), we derive the key relation 

dE,ldt = 2lE, - 4hTk (5.8) 

where 

E,=T,+II,, 2l-Q = 2I-I + 3L2M 

Choosing the factor 3L to be strictly positive, we reduce Eq. (5.8), taking into account the fact that the 
functional Tk is non-negative, to the differential inequality 

dE,ldt < 21LE, 

integration of which gives the important limit 

E,(t) I Ei(0)exp(2ht) (5.9) 

It is noteworthy that inequality (5.9) is true both for any solution of initial-boundary-value problem 
(5.1), (5.2), and for arbitrary positive values of the constant quantity h. Moreover (which is extremely 
important), when obtaining this inequality no limitations were imposed on the sign of the function II. 

Finally, relation (5.9) enables us to conclude that the integral EL, in a global sense, changes 
monotonically with time. This serves as a basis for taking it as the Lyapunov functional below [l, 9, lo]. 

6. BILATERAL EXPONENTIAL ESTIMATES OF 
THE GROWTH OF PERTURBATIONS 

We will now construct a priori bilateral exponential estimates of the growth of small axisymmetric long- 
wave perturbations (5.1)-(5.4) of stationary solutions (3.8) of mixed problem (3.3)-(3.6) using the 
fundamental integral inequality (5.9), and also by an appropriate choice of the functions co(v, t) and 
z&(v, z) when the following inequality holds either everywhere inside the jet or only in a certain part 
of it 

x-wo2<o (6.1) 

In this case we can take the initial perturbations co(v, z) and uh(v, z) (5.2) and (5.4) to be such that 
the following relations are satisfied , 

n,(O) < 0, T2UV - T,(O) < II-MO)l (6.2) 

The functional EL(O) (5.8) then becomes a second-degree polynomial in the parameter h with a positive 
coefficient M(0) (5.6) for A2 and a negative free term E3(0) = E2(0) - Tl(0) (4.2), (5.6), (5.7) 

Eb(0) = E3(0) - i%(O) + h2M(0) (6.3) 

If we assume that 

O<h<A=A,+,& (6.4) 
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then, using expression (6.3) the integral EL(O) can be given an upper limit, i.e. 

E,(O) < 0 (6.5) 

Inequalities (5.9) and (6.5) obviously confirm the exponential growth of the small axisymmetric long- 
wave perturbation (5.1)-(5.4) with time. 

Assuming h E A - 6i (with any constant quantity Z1 E IO, A[), relation (5.9) can be represented in 
the form 

Since, in accordance with the definitions (5.8) of the functions EL, TX and IIA, and also with expression 
(5.6) for the integral II,, the relation 

is true, inequality (6.6) can be rewritten in the more indicative form 

-n,(t)> IE,-gl(0)lexp[2(A-6,)tl 

or 

(6.7) 

Relation (6.7) clearly demonstrates that the parameter A - 6i (6.4), (6.6) is the lower limit of the 
permissible values of the increments of the small axisymmetric long-wave perturbation (5.1)-(5.4) of 
the exact stationary solutions (3.8) of initial-boundary-value problem (3.3)-(3.6). 

Suppose the following inequality is true 

h>A+= sup A (6.8) 
So(v, 0, up> 2) 

In this case the functional El(O) will be positive-definite for any possible initial data co(v, z) and 
u;(v,z) (5.2), (5.4). 

Finally, assuming h = A+ + Z2 (& is an arbitrary positive constant), we convert relation (5.9) into the 
inequality 

E *'+tp E*++S (WxpMA+ + 62)tl 2 

which means that the quantity A+ + Z2 is an upper estimate of the value of the increments of the small 
axisymmetric long-wave perturbations (5.1)-(5.4) of the stationary solutions (3.8) of mixed problem 
(3.3)-(3.6). 

Comparing relations (6.7) and (6.9) we can conclude that for a rate of growth o of the small 
axisymmetric long-wave perturbations (5.1)-(5.4) the parameter A+ (6.4) (6.8) serves to construct both 
upper and lower boundaries 

A+-6,IosA++6, (6.10) 

The double inequality (6.10) indicates that those small axisymmetric long-wave perturbations (5.1)-(5.4) 
increase most rapidly of all, the increments of which are close in value to the value of the parameter 
I\+. 

Thus, if relation (6.1) holds, then after calculating the value of the parameter A’, using expressions 
(6.4) and (6.8) which characterizes the rate of increase w (6.10) of the most rapidly growing small 
axisymmetric long-wave perturbations (5.1)-(5.4) we can answer the following question: after what time 
will small axisymmetric long-wave perturbations (5.1)-(5.4) lead to the destruction of stationary 
axisymmetric shear magnetohydrodynamic jet flow (3.8) (or, which is equivalent, (1.22)) of an inviscid 
ideally conducting incompressible fluid of uniform density with a free surface? 
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Note that the results discussed in this section are a proof of the fact that condition (4.4) for 
linear stability of the exact stationary solutions (3.8) (or (1.22)) is simultaneously also sufficient and 
necessary. 

From the mathematical point of view, the results presented in this paper are a priori, since theorems 
of the existence of solutions of the mixed problems considered for systems of partial differential equations 
have not been proved. 

7. EXAMPLES 

We will investigate the steady axisymmetric shear magnetohydrodynamic jet flow 

WO(“) = 2 -v, RO(v) = v, RY= 1, hO=O, H0(v)=v+2 

a,(v) = v2/2 + 2v + 1, K = 2, a, = fi, R, = 2 
(7.1) 

of an ideal incompressible fluid of uniform density with infinite conductivity in a region which can be 
imagined as an unbounded strip 

[(z,v): --co<z-c+-, OIVS l] (7.2) 

It is clear that this flow is a typical representative of flows corresponding to the stationary solutions 
(1.22) of initial-boundary-value problem (1.19) (and of course also corresponding to the exact stationary 
solutions (3.8) of mixed problem (3.3)-(3.6)). 

For the flow (7.1) (7.2) the function F(a,) (1.21) must satisfy relations (4.3) which, in the situation 
considered, take the form 

whence it follows that 

dFldv = 2-v, 2F(O) = F(1) 

F(v) = - v2/2 + 2v + 312 

Further, the flow (7.1) (7.2) is such that inequality (4.4) is satisfied for it. Really, direct calculations 
show that 

pbVo2 = 8vLO 

over the whole range (7.2) of variation of the independent variable v. 
This indicates that the flow (7.1), (7.2) will be stable in the linear approximation to small axisymmetric 

long-wave perturbations (4.1) and all the more (5.1)-(5.4). 
We will now investigate the steady axisymmetric shear magnetohydrodynamic jet flow 

w’(v) = 4-v. R’(v) = v, Ry = 1, ho = 0 

a*(v) = ‘+A’(v) + ;h(v + 1 + N(v)] + 1, K = 8 (7.3) 

Ho(v) = N(v) z &iiz, a0 = 4, R, = 3 

of an inviscid ideally conducting incompressible fluid of uniform density within the same infinite strip 
(7.2). 

This flow is also one of the representatives of flows corresponding to the stationary solutions (1.22) 
(and together with them, naturally, also the exact stationary solutions (3.8)). For this we will represent 
the function F(a*) in the form 

F(v) = - v2/2 + 4v + 2112 

as a result of which the relations 
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dFldv = 4-v, 4F(O) = 3F(l) 

are converted into identities, which follow, in the case considered, from relations (4.3). 
Moreover, for the flow (7.2), (7.3) 

pbVo2 = 2(5v-22) 

i.e. inequality (6.1) is satisfied for any v E [0, 11. 
Finally, the flow (7.2), (7.3) will be unstable, for example, to small axisymmetric long-wave perturbations 

(S.l)-(5.4) with initial data !$(v, z) and z&v, z) in the form 

2nz co(v, z) = sin- + v, 
1 u&, z) = 0 (7.4) 

where 1 is a certain positive constant quantity. 
In fact, using relations (5.2), (5.6), (5.7) (6.2) and (6.3), and also taking into account the periodicity 

of the function kO(v, z) (7.2) with respect to the independent variable z, it is easy to establish that 

2’1 

n,(o) = YJJ[ (5v - 22)cos’~]dvdz = - y < 0 
00 

2” 

~~(0) - T,(O) + II,(O) = ‘+jj[(v’- 3v 867t2 
- 6)cos22~]dvdz = - 31 < 0 

00 

whence the correctness of inequalities (6.2) follows. This in turn enables us to conclude that the flow 
(7.2), (7.3) is unstable to small axisymmetric long-wave perturbations (5.1)-(5.4) (7.4); they will develop 
with time in accordance with the limits (6.7) and (6.9) (except that in the latter we must replace A+ 
(6.4), (6.8) by A (6.4)), whereas their rate of growth cc) (6.10) will be determined solely by A. 
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